Konu anlatımı soru çözümleri
  İkincİ derecedeN denkLemLeR
 

A. TANIM

a, b, c reel sayı ve a ¹ 0 olmak üzere,

      ax2 + bx + c = 0

ifadesine x e göre düzenlenmiş ikinci dereceden bir bilinmeyenli denklem denir. Denklemi sağlayan (varsa) x reel sayılarına denklemin kökleri, tüm köklerin oluşturduğu kümeye denklemin çözüm kümesi (doğruluk kümesi), çözüm kümesini bulmak için yapılan işleme de denklem çözme denir.

 

B. DENKLEMİN ÇÖZÜMÜ

1. Çarpanlara Ayırma Yoluyla Denklem Çözme

İkinci dereceden denklemin çözüm kümesi, kolaylıkla görülebiliyorsa, çarpanlarına ayrılarak bulunur. Bunun için,

 olmak üzere,

a × b = 0 ise, (a = 0 veya b = 0) olduğu göz önüne alınacaktır.

 

2. Formül Kullanarak Denklem Çözme

ax2 + bx + c = 0 denkleminin sol tarafı kolayca çarpanlara ayrılamayabilir. Bu durumda, ikinci dereceden bir bilinmeyenli denklemin çözümü için genel bir yaklaşıma ihtiyaç vardır.

ax2 + bx + c = 0 denkleminde,

      D = b2 – 4ac

ifadesine, denklemin diskiriminantı denir.

1) D > 0 ise denklemin farklı iki reel kökü vardır.

    Bu kökler,

    

 

2) D = 0 ise denklemin eşit iki reel kökü vardır.

    Bu kökler,

    
Denklemin bu köküne çift katlı kök ya da çakışık kök denir.

3) D < 0 ise denklemin reel kökü yoktur. Bu durumda denklemin karmaşık iki farklı kökü vardır.

 

C. İKİNCİ DERECEDEN BİR DENKLEME DÖNÜŞEBİLEN DENKLEMLERİN ÇÖZÜMÜ

1. Polinomların Çarpımı Veya Bölümü Şeklindeki Denklemlerin Çözümü

 

2. Yardımcı Bilinmeyen Kullanılarak Çözülebilen Denklemlerin Çözümü

Verilen denklemde benzer ifadeler yeniden adlandırılarak denklem basitleştirilir. Örneğin

 x4 – 10x2 + 9 = 0 denkleminde x2 = t,

 22x – 6 × 2x + 8 = 0 denkleminde 2x = u,

 (x2 – 2x)2 – (x2 – 2x) – 30 = 0 denkleminde,

     x2 – 2x = k,

  denkleminde  adlandırılması yapılarak çözüme gidilir.

 

3. Köklü Denklemlerin Çözümü

Bir denklemde bilinmeyen, kök içinde bulunuyorsa bu denkleme köklü denklem denir.

Denklemde köklü terim bir tane ise, köklü terim eşitliğin bir tarafında yalnız bırakılır. Sonra kökün derecesine göre kuvvet alınır. Gerekli işlemler yapılarak denklem çözülür. Bulunan köklerden köklü terimi tanımsız yapmayanlar alınır.

 

4. Mutlak Değer İçeren Denklemler

Kök içini sıfır yapan değerlere göre, inceleme yapılarak çözüme gidilir. Örneğin;

 |x – 1| + 2x = 5 denkleminde (x £ 1 ve x >1) alınarak çözüme gidilir.

 

D. İKİNCİ DERECEDEN BİR DENKLEMİN KÖKLERİ İLE KAT SAYILARI ARASINDAKİ BAĞINTILAR

ax2 + bx + c = 0 denkleminin kökleri x1 ve x2 ise,

      

      

 

 

 

E. KÖKLERİ VERİLEN İKİNCİ DERECEDEN DENKLEMİN KURULUŞU

Kökleri x1 ve x2 olan II. dereceden denklem;

 

Kural

ax2 + bx – c = 0 ... 

denkleminin kökleri x1 ve x2 olsun. m ¹ 0 olmak üzere, kökleri mx1 + n ve mx2 + n olan ikinci dereceden denklem denkleminde x yerine  yazılarak elde edilir.

 

 

 

F. ÜÇÜNCÜ DERECEDEN BİR DENKLEMİN KÖKLERİ İLE KAT SAYILARI ARASINDAKİ BAĞINTILAR

ax3 + bx2 + cx + d = 0

denkleminin kökleri x1, x2 ve x3 ise,

      

 

Kökleri x1, x2 ve xolan III. dereceden denklemin kökleri:

Aritmetik dizi oluşturuyorsa; 

Geometrik dizi oluşturuyorsa; 
************************************************************************************

2. Dereceden Denklemler (İkinci Dereceden Denklemler)

İkinci Dereceden Denklemler


MÖ 2000'lerde Mezopotamyalılar ikinci dereceden denklemlerin pozitif kökünü (çözümünü) bulmak için algoritma geliştirmişlerdi. Mısırlıların da MÖ 2160-1700 tarihleri arasında ikinci dereceden denklemlerin kökünü bulmayı bildikleri Berlin papirüsünden anlaşılıyor.

Ama o zamanlar daha "denklem" kavramı gelişmemişti ve gerçek yaşamdan alınan problemlerde ortaya çıkan, dolayısıyla pozitif kökleri (genellikle bir uzunluk) olan denklemlerle uğraşılırdı.

Yunanlılar MÖ 300 yıllarında ikinci dereceden bir denklemi geometrik yöntemlerle çözebiliyorlardı. Yunanlılar için de bir sayı daha çok bir uzunluktu. Yunanlı Diofantus ikinci dereceden denklemleri çözebiliyordu, ama köklerden sadece birini buluyordu, köklerin her ikisi de pozitif olduğu zaman bile. 

Hintli Aryabhata her iki kökü birden bulmasını biliyodu. Ama bu bilgi daha sonra unutulmuşa benziyor, çünkü Brahmagupta köklerden sadece birini bulabiliyormuş gibi bir intiba bırakmıştır. Mahavira en azından pozitif kökü bulmayı mutlaka biliyordu, Sridhara da öyle. 

Türk Harizmi ve İranlı Ömer Hayyam da pozitif kökü bulmayı biliyorlardı. Ömer Hayyam ayrıca üçüncü dereceden bir denklemin birden fazla kökü olabileceğini de biliyordu. 1000 yıllarında Araplar ax2n+bxn+c=0 denklemini ikinci dereceden bir denkleme indirgeyebiliyorlardı.

İspanyol Abraham bar Hiyya-Ha-Nasi ya da Savasorda ikinci dereceden denklemlerin çözümünü Batı'da ilk kez yayımlayan kişi olarak bilinir (Liber Embadorum kitabında.) Viéte (1540-1603), geometrik yöntemler yerine cebirsel yöntemleri kullanan ilk Batılı matematikçi olmuştur. Al-Harazmi bunu çok daha önceden biliyordu.

***************************************************************************
İkİncİ Dereceden Denklemler 

İKİNCİ DERECE DENKLEMİ Babilliler, Mısırlılar ve Çinlilerde x + y = a ve x - y = b denklem çiftinde, yanlışı ılı memeyle x = (a + b)/2 ve y = (a-b)/2 olduğunu biliyorlardı. Çinliler ayrıca matris bloklarını ve bambu çubukları kullanarak bu denklem sistemini çözebiliyorlardı. Daha sonraki gelen halklarda bu geometrik şekilleri kullanarak bu denklem sistemine sayısal çözümler bulmuşlardır. Eski halklarda sistemli bir ispat yöntemi bulunmadığından hu tür işlemler daha çok deneme biçiminde yürütülüyordu. Çinlilerde de sistemli bir ispat yöntemi yoktu. Bunları söylerken, eski Babil, Mısır ve Çin anlatılıyor. Çinlilerin ikinci derece denklemine dönüşen problemleri Dokuz Bölüm isimli kitapta iki tane denklemle verilir. Bu denklemler arasında bilinmeyenin birisi yok edilerek sonuçta ikinci derece denklemi bulunur. Sonra denklem kendi yöntemleriyle çözülür. Çinlilerin Dokuz Bölüm isimli kitabındaki 11. problem şöyledir. Bir kapının boyu eninden 6.8 birim daha fazladır. Kapının köşegeninin uzunluğu da 10 birimdir. Kapının enini ve boyunu hesaplayınız. Problemin ifadesine göre boyutlar x ve y ise x-y = 6.8 ve x2 + y2=100 denklem çifti yazılır. Çinliler bu problemi daha çok Pisagor yöntemiyle çözerler. Eğer bu problemi biz x - y = d ve x2 + y2 = c2 biçiminde yazarsak, (x + y)2 = 4xy + (x - y)2 ve c2 = 2xy+(x - y)2 yada 4xy = 2c2 - 2(x - y)2 yazılır. Buradan (x + y)2 = 2c2-(x - y)2 ya da x+y= yazılır. Eşitliğin her iki yanı 2 sayısıyla bölünürse, olur. Buradan x +y = 12.4 gelir. x-y = 6.8 olarak verilmişti. Buradan x = 9.6 ve y = 2.8 olarak bulunur. Çinlilerin Dokuz Bölüm isimli kitaplardaki problemler daha çok doğrusal ve ikinci derece olan denklem sistemleri biçimlerine dönüşür. Bu tür örnekler Çinlilerde fazladır. Oysa Eski Babillilerdeki tabletler x + y = b ve xy = c biçimlere dönüşen problemlerle doludur. Babillilerin problemleri daha çok alan ve çevre türünde düzenlenmiştir. Alanı c ve çevresi 2b olan çok sayıda Babil tableti bulunmuştur. Bu tabletler x = b/2 + z ve y = b/2 - z boyutlu dikdörtgen ve c alanı t. . (b/2 + z) (b/2 - z) = (b/2)2 - z2 biçiminde alınarak hesaplar yapılmıştır. Bu hesaplamalara göre olur. Buradan ve y = değerleri istenilen denklem sisteminin çözümüdür. Burada yazdığımız modern gösterimler, Babillilerin tabletlerinde yapılan çözümlerin yorumlanması ve açıklanması türendedir. Babilliler aslında formül vermemişlerdir. Her problemi çözerken çözümde kullandıkları yöntemler bunlardır. Babilli yazıcılar bu işlemi geometrik olarak nasıl yapmışlar ve nasıl tabletlere geçirmişlerdir? Şimdi onu gösterelim. Yine x + y = b ve xy = c olarak verilsin. Burada x değerine uzun kenar ve y değerine de kısa kenar diyorlar. Daha kısa deyimle x uzunluk ve y de genişlik olarak alınıyor. Buna göre problemin ifadesinden genel olarak x + y = b ve xy = c gösterimleri geliyor. Modern dille bu iki denklem sisteminden uzunluk denen x ve genişlik denen y değeri hesaplanacak. Bu hesaplamaları geometrik olarak şu şekle dayandırıyorlar. Yani komutlarından böyle yaptıkları anlaşılıyor. Önce b sayısını ikiye bölüyor ve b/2 kenarlı kareyi çiziyor. Burada b/2 = x - (x - y)/2 = y + (x - y)/2 biçiminde ve b/2 = (x + y)/2 olduğundan, b/2 kenarlı karenin üa-nı xy = c alanından (x - y)/2 kenarlı karenin alanı kadar daha fazladır. Yani, x+y=b ve xy=c olan denklem sisteminin çözümünün geometrik yorumu olur. Yukarıdaki şekle göre b/2 sayısına sayısını bir kez ekler ve bir kez de çıkarırsak sırasıyla

SORU-1 :
SORULAR
1)2x 2 - 8x + 6 = 0 denklemini çözünüz.


CEVAP-1 :
∆ = 8 2 - 4 . 2 . 6 = 16 ve 16 >0 olup farklı iki çözüm vardır. x 1 = ( - (-8) + √ 16 ) / 2 . 2 = ( 8 + 4 ) / 4 = 3 ve x 2 = ( - (-8) - √ 16 ) / 2 . 2 = ( 8 - 4 ) / 4 = 1 olur. Ç = { 1 , 3 } 


SORU-2 :
2) x 2 + 4x -2 = 0 denkleminin kökleri x 1 ve x 2 dir. Kökleri x 1 + 3 ve x 2 + 3 olan denklemi bulunuz.

CEVAP-2 :
Denklemin kökler toplamı -4 / 1 = -4 ve kökler çarpımı (-2) / 1 = -2 dir. Kurmak istediğimiz denklemin kökler toplamı T = x 1 + 3 + x 2 + 3 = -4 + 6 = 2 dir. Kökler çarpımı ise Ç = ( x 1 + 3 ) . ( x 2 + 3 ) = x 1 . x 2 + 3 . ( x 1 + x 2 ) + 9 = -2 + 3 . (-4) + 9 = -5 olur. Denklem x 2 - Tx + Ç = 0 şeklindedir. x 2 - 2x - 5 = 0 aradığımız denklemdir.


SORU-3 :
3) x 2 + xy =12 denklem sistemini çözünüz.
xy + y 2 = 4


CEVAP-3 :
Birinci ve ikinci denklem taraf tarafa toplanırsa x 2 + 2xy + y 2 = 16 ve taraf tarafa çıkarılırsa x 2 - y 2 = 8 denklemleri elde edilir. ( x + y ) 2 = 16 ise x + y = 4 veya x + y = - 4 olacaktır. 
x 2 - y 2 = 8 ifadesi x + y = 4 ve x + y = - 4 ifadeleriyle taraf tarafa ayrı ayrı bölünürse x - y = 2 ve x - y = -2 elde edilir. 
x + y = 4 ve x + y = - 4 denklem sistemleri ayrı ayrı çözülürse x = 3 , y = 1 ve 
x - y = 2 x - y = -2 x = -3 , y = -1 olur.
Ç = { (3 , 1) , (-3 , -1) }



 
  Bugün 1 ziyaretçi (11 klik) kişi burdaydı!
Get your own Chat Box! Go Large!
 
 
=> Sen de ücretsiz bir internet sitesi kurmak ister misin? O zaman burayı tıkla! <=